NEW DECOMPOSITION-BASED TECHNIQUES FOR SOLVING TWO-STAGE STOCHASTIC PROGRAMS: NETWORK INTERDICTION PROBLEMS

- D. Morton (UT Austin)
- J. Salmerón, K. Wood (NPS)

The Problem

$$(P) \underset{x \in X}{\text{Min}} z = E\{f(\mathbf{X}, \widetilde{\boldsymbol{\xi}})\}, \text{ where}$$

$$f(\mathbf{X}, \widetilde{\boldsymbol{\xi}}) = c'\mathbf{X} + \underset{y \ge 0}{\text{Min}} \widetilde{q}'\mathbf{y}$$

$$\text{s.t.} \widetilde{D} \mathbf{y} \le \widetilde{B}\mathbf{X} + \widetilde{d}$$

$$x = \text{First-stage decisions (before } \widetilde{\xi} \text{ is known)}$$

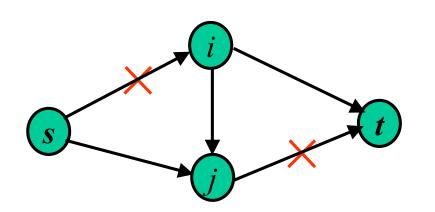
 $y = y(x, \widetilde{\xi}) = \text{Second-stage decisions } \widetilde{\xi} = (\widetilde{d}, \widetilde{q}, \widetilde{B}, \widetilde{D})$

Network design (demand, transportation times)

Electric Power Generation (demand, generators availability, water inflows, spot market costs)

Network interdiction (attack successes, network data)

Network Interdiction Problems



MAX *E*{ Min Length from *s* to *t* }

MIN E{ Max Flow from s to t}

 $x_{ii} = 1$ if interdiction of arc (i.j) is attempted, 0 otherwise

 l_{ij} , d_{ij} = Nominal Arc (i.j) Length, Delay (Shortest Path problem)

 u_{ij} = Nominal Arc (i,j) Capacity (Maximum Flow problem)

 r_{ii} = Amount of resource needed to attempt to interdict the Arc (i,j)

 ξ_{ij} = Attack success for Arc (*i,j*) (Random variable):

$$l_{ij} = l_{ij} + \xi_{ij} d_{ij} x_{ij}$$
 ("Delay" for the Shortest Path problem)

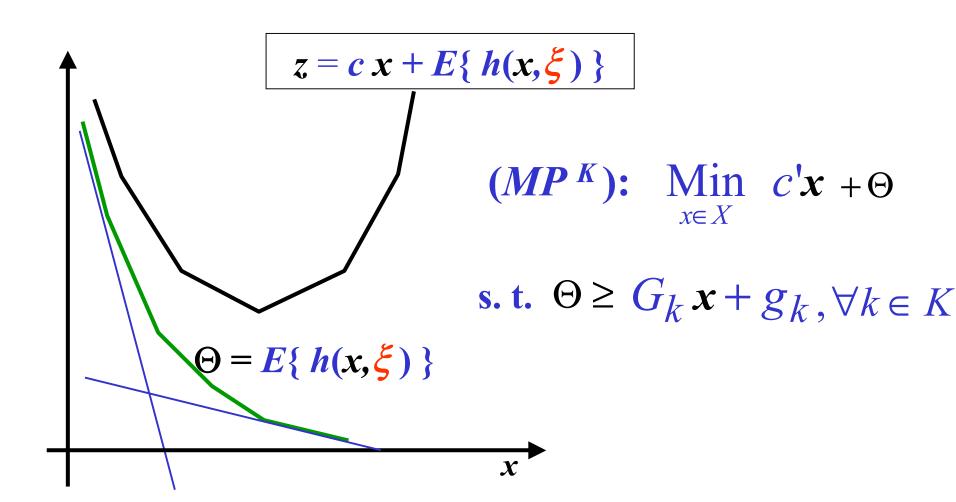
$$\tilde{u}_{ij} = u_{ij} (1 - \xi_{ij} x_{ij})$$
 ("Diminished" capacity for the Max. Flow Prob.)

Our Approach:

Sampling Version of Benders Decomp

- Other researchers have worked in this arena, e.g., Higle and Sen, Dantzig and Glynn, Dantzig and Infanger
- Our approach is new, and probably conceptually simpler

Benders Decomposition (I)



Benders Decomposition (II)

Subproblem (and its dual) associated to a first stage feasible solution

$$SP(\hat{x}_k): \min_{\mathbf{y} \geq 0} \sum_{\omega \in \Omega} \mathbf{p}^{\omega} q^{\omega} \mathbf{y}_k^{\omega}$$
s.t. $D^{\omega} \mathbf{y}_k^{\omega} \leq B^{\omega} \hat{x}_k + d^{\omega}, \forall \omega \in \Omega, (\boldsymbol{\pi}_k^{\omega})$

This is a separable problem:

$$\forall \omega \in \Omega \qquad SP^{\omega}(\hat{x}_k) : \underset{y \ge 0}{\min} \quad p^{\omega} q^{\omega} y_k^{\omega}$$

$$\text{s.t.} \quad D^{\omega} y_k^{\omega} \le B^{\omega} \hat{x}_k + d^{\omega}, \quad (\pi_k^{\omega})$$

Benders Decomposition (III)

G and g are computed as the expectation of πB and πd

$$\widetilde{g}_{k} = \widetilde{\pi}_{k} \widetilde{B}$$

$$\widetilde{g}_{k} = \widetilde{\pi}_{k} \widetilde{d}$$

$$G_{k} = E\{\widetilde{G}_{k}\} = \int_{\Omega} \widetilde{\pi}_{k} \widetilde{B} \, dP(\omega)$$

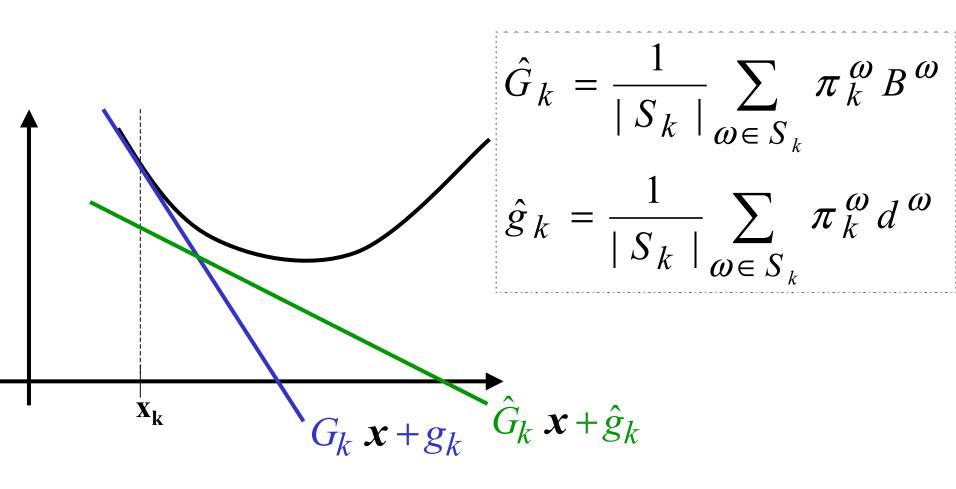
$$g_{k} = E\{\widetilde{g}_{k}\} = \int_{\Omega} \widetilde{\pi}_{k} \widetilde{d} \, dP(\omega)$$

But exact values for G_k and g_k are unobtainable if

- The number of "scenarios" is large (even if finite)
- Some of the distributions are continuous

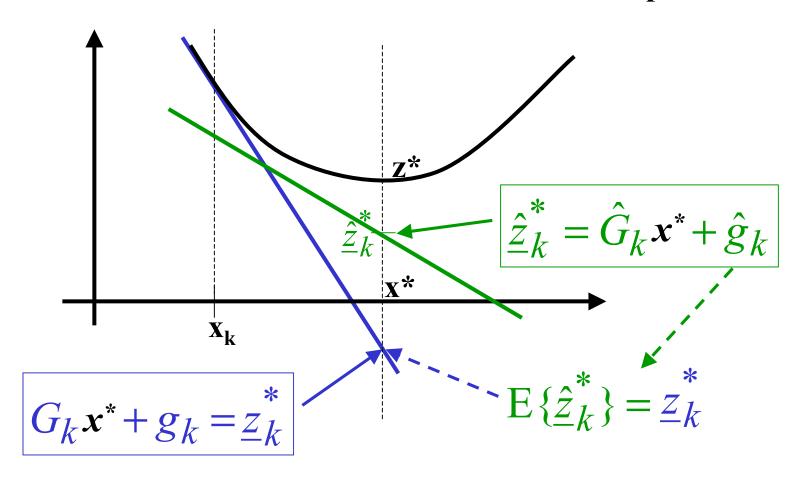
Benders Decomposition (IV)

"May we replace the actual G_k and g_k by estimators?"



Estimation Procedure (I)

How do the estimated cuts behave at the optimal solution?



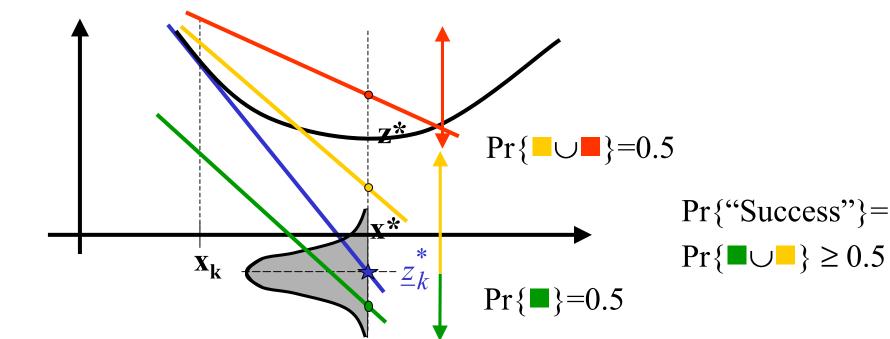
Estimation Procedure (II)

(C.L.T.)

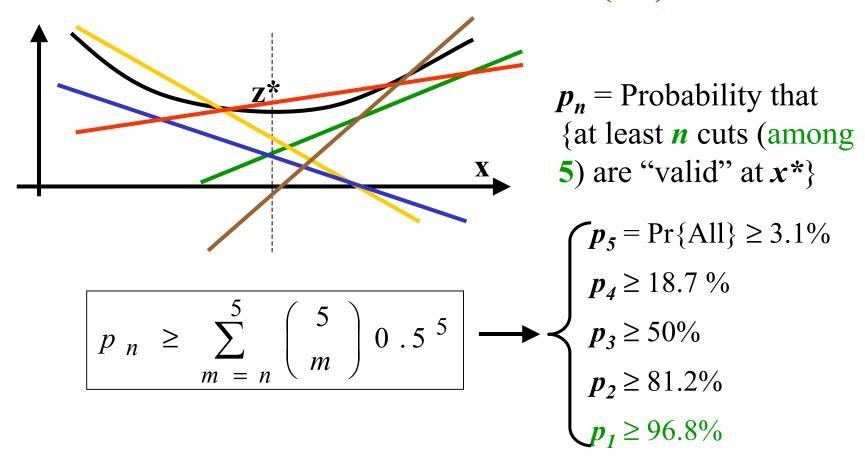
$$(\hat{G}_k, \hat{g}_k) \cong N_{n+1} \begin{pmatrix} G_k \\ g_k \end{pmatrix} \begin{pmatrix} \Sigma_G & \Sigma_{G,g} \\ \Sigma_{G,g} & \sigma_g \end{pmatrix}$$

Thus

$$\hat{\underline{z}}_{k}^{*} = \hat{G}_{k} x^{*} + \hat{g}_{k} \equiv N_{1}(\underline{z}_{k}^{*}, \Lambda)$$



Estimation Procedure (III)



In general, for a total of *n* cuts we may find $m=m(n, \alpha)$ such that:

 $\Pr\{\text{ at least } m \text{ among } n \text{ cuts are valid at } x^*\} \geq 1 - \alpha$

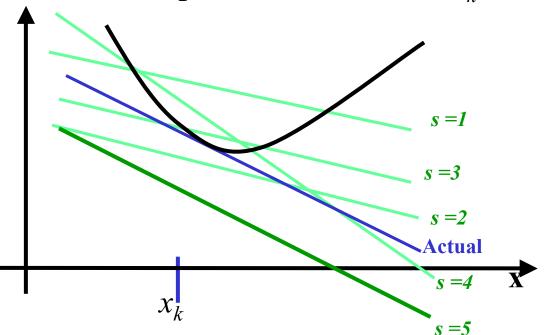
Probabilistic Bound (I)

Let s denote an index for multiple cuts at the same x_k

"Group of $s=1, 2, ..., n_k$ cuts at iteration k"

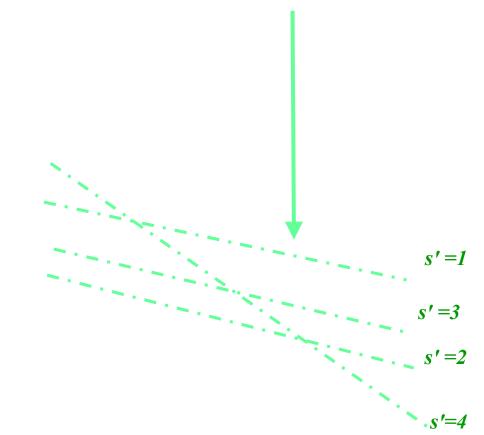
 n_k is the k-th "group size"

$$(\hat{G}_{k}^{S}, \hat{g}_{k}^{S})$$



Pr { (at least) *one* of the 5 cuts is valid at x^* } = 0.968

The "Weakest" Cut from each group



Probabilistic Bound (II)

$$MP^{K}: \underset{\Theta, \delta, x \in X}{\min} c'x + \Theta$$

$$MP^{K}: \underset{\Theta, \delta, x \in X}{\text{Min}} \quad c'x + \Theta$$

$$\underset{S.t.}{\bullet} \begin{cases} \Theta \ge \hat{G}_{k}^{S}x + \hat{g}_{k}^{S} + (\delta_{k}^{S} - 1)M_{k}^{S}, \\ \forall k \in K, s = 1, ..., n_{k} \end{cases}$$

$$\sum_{s=1}^{n_{k}} \delta_{k}^{S} = 1, \forall k \in K; \quad \delta \in \{0,1\}^{N}$$

 $A_k = \{ \text{At least one cut among } n_k \text{ in the } k\text{-th group lies below } \underline{z}_k^* \}$

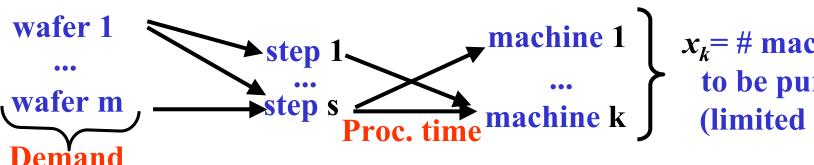
$$\Pr\{LB(K) \le z^*\} \ge \Pr\{\bigcap_{k \in K} A_k\} = \prod_{k \in K} (1 - 0.5^{n_k})$$

 $n_k = 10$ for all the groups guarantees Prob > 0.95 for 50 iters.

$$n_k \approx 7.8 + 1.57 log(k)$$
 (8, 9, 10, 11, 11, 11, 11, 12, 12,...)
guarantees Prob > 0.95 indefinitely

Computational Results (I)

SEMICONDUCTOR WAFER PRODUCTION-FACILITY EXPANSION



 $x_k = \#$ mach. type k to be purchased (limited budget)

27 machine types (budget allows to buy 6 machines)

10 wafers: 5 scenarios of demand per wafer

7 steps: 2 scenarios per step-machine = $\mathbf{E}(T_{sm}) \cdot [1 \pm \alpha]$

α	X	Existing (LB,UB)	New (LB*,UB)		
0.00	CONT.	(114.6, -)	(137.3, 145.8)		
	INTEGER	(168.1, 179.9)	(134.9, 179.3)		
0.10	CONT.	(34.24, -)	(138.6, 146.9)		
	INTEGER	(86.6, 173.6)	(135.8, 171.6)		
0.25	CONT.	(0.00, -)	(126.3, 131.7)		
	INTEGER	(0.00, 153.4)	(125.3, 149.4)		

(*) Prob. > 0.95 in all cases

Computational Results (II)

NETWORK CAPACITY EXPANSION

• x_k = How much capacity should be added to each arc k in a communications network (limited budget)

Second stage: Minimize the unmet demand for point-to-point "connections" m

Each connection m may use different existing routes r Different routes may share one or more arcs k

• Uncertainty comes from: Demand for connection m

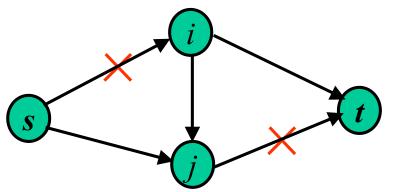
Arcs	Routes	Dems.	LB*	UB	Gap (%)	MP time	SP time
7	45	10	3.77	3.80	0.7	2 min	5 min
50	350	86	12.74	12.91	1.3	20 min	4 h
89**	620	86	9.75	10.21	4.7	4 h	30 h

(*) Prob. > 0.95 in all cases

(**) From Mak et al. (1999), Op. Res. Letters 24: (LB,UB)=(9.22, 10.06) in 43 h

Computational Results (III)

NETWORK INTERDICTION PROBLEMS (I)



MAX *E*{ Min Length from *s* to *t* }

MIN E{ Max Flow from s to t}

x(i,j) = 1 if interdiction of arc (i,j) is attempted, 0 otherwise

 l_{ij} = Nominal Arc (i.j) Length (Shortest Path problem)

 u_{ij} = Nominal Arc (i,j) Capacity (Maximum Flow problem)

 r_{ii} = Amount of resource needed to attempt to interdict the Arc (i,j)

 ξ_{ij} = Attack success for Arc (*i,j*) (Random variable):

$$l_{ij} = l_{ij} + \xi_{ij} d_{ij} x_{ij}$$
 ("Delay" for the Shortest Path problem)

$$\tilde{u}_{ij} = u_{ij} (1 - \xi_{ij} x_{ij})$$
 ("Diminished" capacity for the Max. Flow Prob.)

Computational Results (IV)

NETWORK INTERDICTION PROBLEMS (II)

Problem Type	Nodes	Arcs	No. allowed Interd.	LB	UB	Gap (%)	CPU	Other methods
Sh. Path	8	21	6	0.298	0.304*	2.0	1.7 min	
Sh. Path	50	893	10	137.9	142.1*	3.0	10 min	
Sh. Path	150	1,853	20	12,111	12,718*	5.0	2h	
Sh. Path	150	1,853	50	14,178	15,460*	9.0	3h	
Max. Flow	4	5	2	2.11*	2.14	1.4	7 sec	
Max. Flow	150	1,853	10	151.1*	157.4	4.1	8h	
Max. Flow**	38	67	6	10.76*	10.82	0.6	2 min	1 min
		67 ?		5.72*	5.94	4.0	2.5 min	6 min
		67 ?	9	3.82*	3.99	4.4	4.5 min	4 min
Max. Flow**	37	72	6	78.8*	79.82	1.3	6 min	30 sec
		72?		53.13*	54.95	3.4	5.5 min	8.5 min

^(*) Prob. > 0.95 in all cases

^(**) From Cormican et al. (1996), Op. Res. 46, No. 2

Ongoing and Future Work

- What are the actual convergence properties of the algorithm?
- How to obtain (valid) M's as tight as possible?
- Other representations that avoid the use of M's?
- What helpful information might be preprocessed?:
 - Cut dominance
 - MP with "minimized cuts" and/or "average cuts"
- What is a "good choice" for the groups sizes a priori?
- How to handle the case when LB exceeds UB?
- What additional strategies in Benders Decomp. may be used?:
 - Elimination of inactive cuts (or Groups of cuts here)
 - Trust regions, regularized decomposition
- Less conservative strategies in terms of the probability of success
- Other linear and nonlinear representations of the estimated cuts